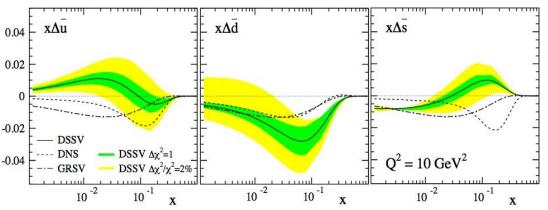


W[±] Boson Production at Mid-rapidity in 500 GeV p+p Collisions in the PHENIX Experiment

Mikhail Stepanov
University of Massachusetts, Amherst for the PHENIX Collaboration


Motivation for Spin Physics with Ws

✓ Key measurement: (anti-)quark flavor separated polarized PDFs

DSSV: PRL 101, 072001 (2008)

✓ Semi-inclusive polarized
DIS measurements (SMC,
HERMES, COMPASS)
through fragmentation
processes

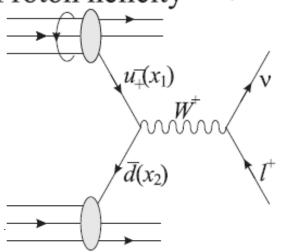
-0.04

- ✓ PHENIX exploits maximal-parity violation in W production in polarized pp collisions:
 - no fragmentation involved:

$$p+p \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$$
(mid-rapidity)

- high scale, Q² (set by W mass)
- extraction of $\Delta \overline{u}(x)$ and $\Delta \overline{d}(x)$
- also possible to probe $\overline{u}(x)/d(x)$ ratio

W[±] Boson Production in Polarized Proton Collisions


(Anti-)quark flavor separation: Through $u\overline{d} \rightarrow W^+$ and $ud \rightarrow W^-$

Maximal parity violation - W couples to only one helicity:

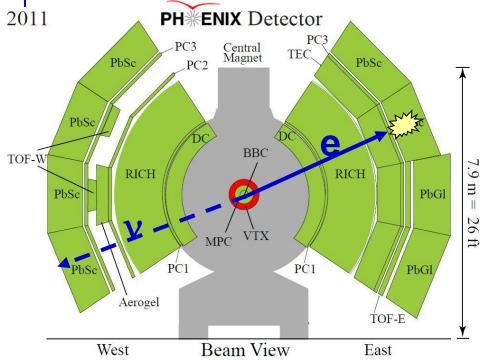
- \checkmark For W^+
 - \underline{u} left-handed: Δu probed in polarized proton
 - d right-handed: Δd probed in polarized proton
 - parity violating longitudinal single spin asymmetry is

$$A_L^{W^+} = -\frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

 W^+ production example at LO: Proton helicity ="+"

(Bunce et al., Ann. Rev. Nucl. Part. Sci. 50:525 (2000))

 \checkmark For W^- , $\Delta \overline{u}$ and Δd probed


In experiment, denoting positive beam helicity by + and negative by -,

polarized PDF's can be accessed by measuring:

$$A_L^W = \frac{1}{P} \times \frac{N^+(W) - N^-(W)}{N^+(W) + N^-(W)}$$

N is the electron yield, normalized by luminosity; P is luminosity-weighted polarization

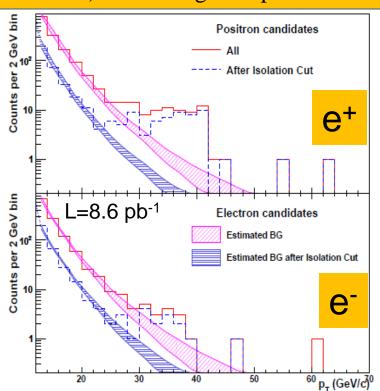
PHENIX Detector and Analysis Strategy

Central arm spectrometers:

- $|\eta|$ <0.35 in rapidity
- 2 arms covering each $\Delta \phi = \pi/2$
- Electromagnetic Calorimeter ($\Delta \phi x \Delta \eta \sim 0.01 x 0.01$)
- Tracking: Charged tracks measured in Drift Chamber (DC) and Pad Chamber(PC1)

$$p+p \rightarrow W^{\pm} \rightarrow e^{\pm} + \nu$$

Detect high energy e[±] in central arms of PHENIX


- EMC 4x4 Tower Sum Trigger
- High energy EM Calorimeter clusters matched to charged tracks
- Timing cut to reduce cosmic ray background
- E/p cut to reduce hadron bkg
- Isolation cut: Signature of a W event is that it is isolated, then sum up energy in a cone around electron/positron candidate of 0.5 rads ΣE < 2GeV (isolation cut used in 2009 data analysis; tune it for 2011 analysis)

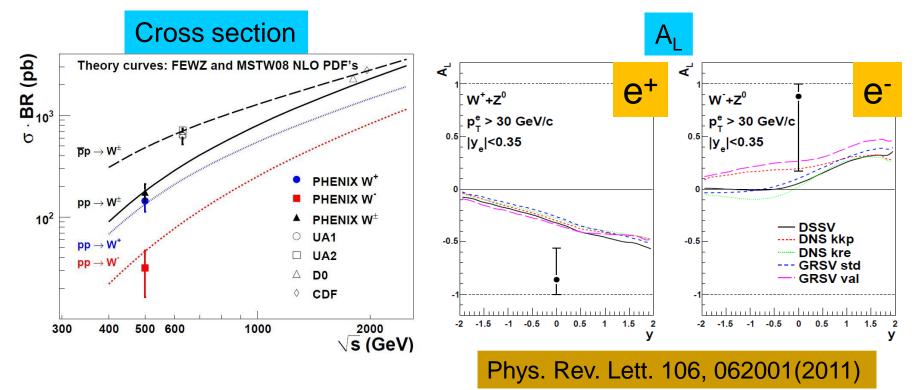
Run 2009 Measured Spectra: Signal and Background

✓ Identify $W^{\pm} \rightarrow e^{\pm}$: rely on excess of events over background

Data:

EMCal cluster distribution after subtracting cosmic background × (Conversion + Accidental) × Tracking Acceptance

MC driven BG estimation:


(NLO Hadrons thru Geant + FONLL c/b)
× Normalization from fit to 10-20 GeV

- Expected signal: Jacobian peaks for W⁺ and W⁻
- W⁻ \rightarrow e⁻ signal has fewer counts than W⁺ \rightarrow e⁺ signal as expected
- Background bands include uncertainty in the photon conversion probability: photon conversions $\gamma \to e^+e^-$ (before the Drift Chamber) simulation study is in progress for 2011 data analysis

Phys. Rev. Lett. 106, 062001(2011)

PHENIX Run 2009 results

- ✓ First W measurements in 500 GeV longitudinally polarized pp collisions
- ✓ Integrated luminosity is ∫Ldt=8.6 pb⁻¹
- \checkmark Polarization is <P>=0.39±0.04

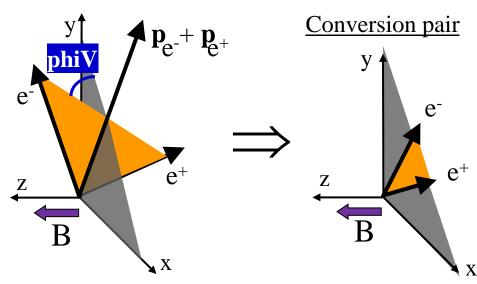
PHENIX Mid-rapidity W[±] in Run 2011

✓ Run 2011 500 GeV longitudinally polarized p+p:

Larger sample with improved polarization

Year	√s [GeV]	∫Ldt [pb ⁻¹]	Pol. [%]
2009	500	8.6	39
2011	500	~17	~46

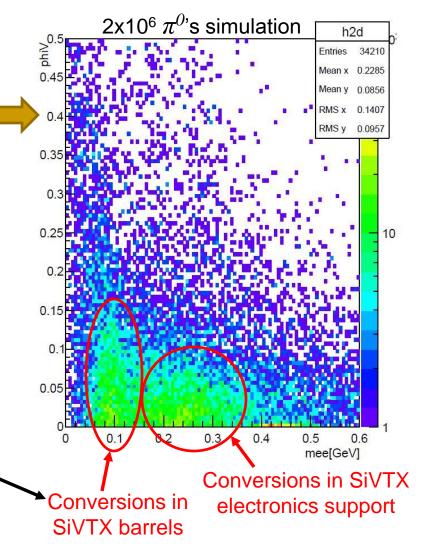
- ✓ Data is being analyzed
- ✓ Changes to central arm from 2009 to 2011: HBD removed, Si VTX installed (!);


 Si VTX Radiation length =13.5%
 - => Increased rate of conversions by ~3 require complementary analysis
- ✓ Si VTX was under commissioning in Run 2011 500 GeV p+p
- ✓ To subtract photon conversion background, proceed with the simulation study
 on a set of kinematic variables (in progress next slide)
- ✓ Acceptance calculation in progress. Acceptance factors: Solid angle, Vertex cut, Trigger efficiency, Calorimeter hot/dead towers, Tracking efficiency

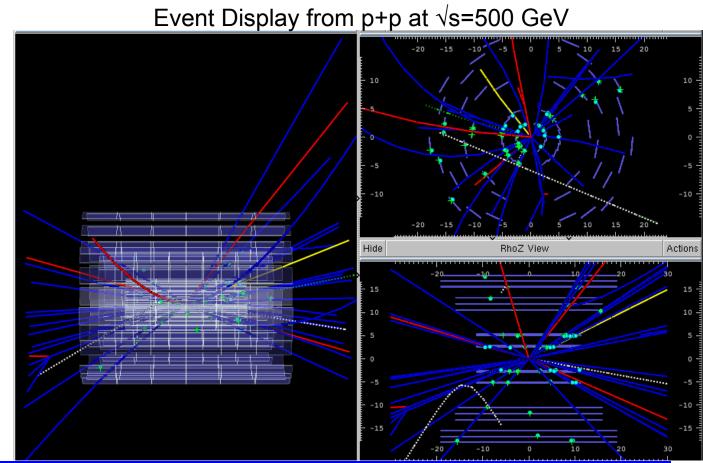
Run 2011 Data Analysis in Progress

Simulation study to remove **photon conversion** ($\gamma \rightarrow e^+e^-$) background

✓ Every high energy e[±] candidate is paired with charged tracks of opposite sign:


• orientation angle of the pair in the magnetic field (**phiV**) vs. apparent invariant mass \mathbf{m}_{ee}

✓ In the simulation data, know exactly origin of every track


✓ Similar pattern seen in real data

✓ Analysis is in progress...

PHENIX in Run 2012

- ✓ Run 2012 500 GeV p+p collisions started on March 18, 2012
- ✓ SiVTX detector is fully operational in Run 2012: will be used in central arm W analysis

Summary

✓ Run 2009:

• First W^{\pm} cross section and A_L results in 500 GeV p+p collisions. Within errors, it is consistent with the predictions

✓ Run 2011:

- Recorded larger data sample with improved polarization in comparison to Run 2009
- Data analysis is in progress, including analysis technique developed to subtract background from conversion in additional material after important detector upgrades

✓ Run 2012:

- Data taking ongoing
- SiVTX is fully operational, will be used in the analysis
- Get more data

Backup slides:

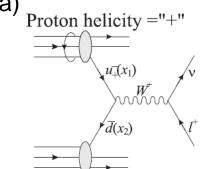
W[±] Boson Production in Polarized Proton Collisions

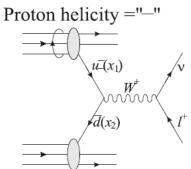
(Anti-)quark flavor separation:

Through $u\overline{d} \to W^+$ and $u\overline{d} \to W^-$

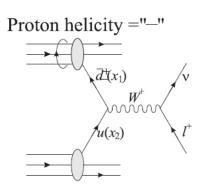
(a) *u* is left-handed:

 Δu_{\perp} probed in polarized proton


(b) d is right-handed:


 Δd probed in polarized proton

In general, asymmetry is a superposition of (a) and (b):

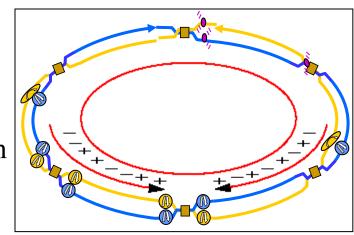

$$A_L^{W^+} = -\frac{\Delta u(x_1)\bar{d}(x_2) - \Delta \bar{d}(x_1)u(x_2)}{u(x_1)\bar{d}(x_2) + \bar{d}(x_1)u(x_2)}$$

 W^+ production at LO:

Proton helicity ="+" $\frac{d_{+}(x_{1})}{d_{+}(x_{2})} v$

(Bunce et al., Ann. Rev. Nucl. Part. Sci. 50:525 (2000))

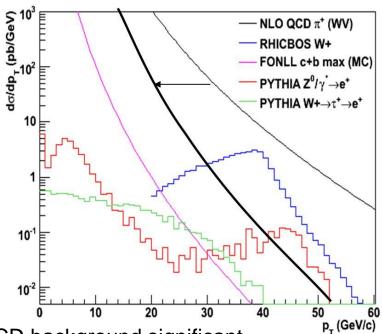
 \checkmark For W^- , $\Delta \overline{u}$ and Δd probed

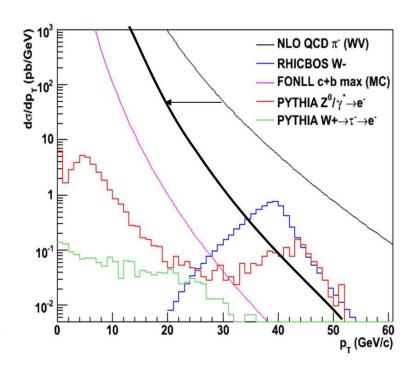

Parity Violating Single Spin Asymmetry

Denoting positive beam helicity by + and negative by -, parity violating longitudinal spin asymmetry can be used to access polarized PDF's by measuring:

$$A_L^W = \frac{1}{P} \times \frac{N^+(W) - N^-(W)}{N^+(W) + N^-(W)}$$

N is the electron yield, normalized by luminosity; P is luminosity-weighted polarization


- ✓ At RHIC, up to 120 bunches in each ring, crossing every 106 ns, helicity of pairs ++,+-,-+,-- alternates rapidly
- ✓ Get one measurement treating "blue" beam as polarized, averaging over "yellow" beam
- Get second measurement treating yellow beam as polarized, averaging over blue beam



Signal and Background components

Identify $W^{\pm} \rightarrow e^{\pm}$: rely on excess of events over background

✓ Signal: Jacobian peaks for W⁺ and W⁻

- ✓ QCD background significant
- √ c/b relatively small above 30 GeV
- \checkmark W→ τ →e is also small
- ✓ Z->e is part of the signal
- ✓ Not shown here but very important:
- Hadronic shower in EMCal hadronic response simulation and data study is in progress
- Photon conversions $\gamma \to e^+ e^-$ (before the Drift Chamber) simulation study is in progress